summaryrefslogtreecommitdiff
path: root/my_functions.py
diff options
context:
space:
mode:
Diffstat (limited to 'my_functions.py')
-rw-r--r--my_functions.py374
1 files changed, 0 insertions, 374 deletions
diff --git a/my_functions.py b/my_functions.py
deleted file mode 100644
index 49dc87d..0000000
--- a/my_functions.py
+++ /dev/null
@@ -1,374 +0,0 @@
-'''
-file that contains some functions that I don't
-want to re-write on each individual .py file
-'''
-
-import bpy, math, re
-from mathutils import Matrix
-
-
-################################################
-# show message on screen for errors or warnnings
-# copied this code from a page I saw it in :)
-################################################
-def show_message(message = "", title = "Message Box", icon = 'INFO'):
-#
- def draw(self, context):
- self.layout.label(text=message)
-
- bpy.context.window_manager.popup_menu(draw, title = title, icon = icon)
-#
-
-
-#######################################
-# calc_scale_matrix function
-# function to build the scale matrix
-#
-# x_scale (float) --> scaling in X axis
-# y_scale (float) --> scaling in Y axis
-# z_scale (float) --> scaling in Z axis
-#######################################
-def calc_scale_matrix(x_scale, y_scale, z_scale):
-#
- scale_matrix = Matrix(( [x_scale, 0, 0, 0],
- [0, y_scale, 0, 0],
- [0, 0, z_scale, 0],
- [0, 0, 0, 1]
- ))
-
- return scale_matrix
-#
-
-
-###################################################
-# calc_rotation_matrix function
-# function to calculate the rotation matrix
-# for a Extrinsic Euler XYZ system
-#
-# x_angle (float) --> rot angle in X axis (radians)
-# y_angle (float) --> rot angle in Y axis (radians)
-# z_angle (float) --> rot angle in > axis (radians)
-###################################################
-def calc_rotation_matrix(x_angle, y_angle, z_angle):
-#
- x_rot_mat = Matrix(([1, 0, 0, 0],
- [0, math.cos(x_angle), -math.sin(x_angle), 0],
- [0, math.sin(x_angle), math.cos(x_angle), 0],
- [0, 0, 0, 1]))
-
- y_rot_mat = Matrix(([math.cos(y_angle), 0, math.sin(y_angle), 0],
- [0, 1, 0, 0],
-
- [-math.sin(y_angle), 0, math.cos(y_angle), 0],
- [0, 0, 0, 1]))
-
- z_rot_mat = Matrix(([math.cos(z_angle), -math.sin(z_angle), 0, 0],
- [math.sin(z_angle), math.cos(z_angle), 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1]))
-
- return z_rot_mat * y_rot_mat * x_rot_mat
-#
-
-
-#################################################
-# calc_translation_matrix function
-# function to build the translation matrix
-#
-# x_translation (float) --> translation in X axis
-# y_translation (float) --> translation in Y axis
-# z_translation (float) --> translation in Z axis
-#################################################
-def calc_translation_matrix(x_translation, y_translation, z_translation):
-#
- translation_matrix = Matrix(( [1, 0, 0, x_translation],
- [0, 1, 0, y_translation],
- [0, 0, 1, z_translation],
- [0, 0, 0, 1]
- ))
-
- return translation_matrix
-#
-
-
-
-##############################################################
-# interpolate function
-# used to find a value in an interval with the specified mode.
-# So that it is clear that the values are points that have 2
-# coordinates I will treat the input as they are (x,y) points
-# the function will either return m_x or m_y depending on
-# which of the middle point values is provided to the function
-# (set None to the variable going to be returned by the
-# function). Only linear interpolation is supported for now.
-#
-# l_x (float) --> left point X axis component
-# l_y (float) --> left point Y axis component
-# r_x (float) --> right point X axis component
-# r_y (float) --> right point Y axis component
-# m_x (float) --> middle point X axis component
-# m_y (float) --> middle point Y axis component
-# interp_type (string) --> "linear" for linear interpolation
-##############################################################
-def interpolate(l_x, l_y, r_x, r_y, m_x, m_y, interp_type):
-#
- # variable to be returned
- result = 0
-
- ##############################################
- # if right point does not exist (special case)
- # return l_y as the interpolation result
- if (r_x == None or r_y == None):
- result = l_y
- return result
-
- ###############################
- # m_x is the one to be returned
- if (m_x == None):
-
- # linear interpolation
- if (interp_type == "linear"):
- m_x = (((r_x - l_x) / (r_y - l_y)) * (m_y - r_y)) + r_x
- result = m_x
-
- ###############################
- # m_y is the one to be returned
- if (m_y == None):
-
- # linear interpolation
- if (interp_type == "linear"):
- m_y = (((r_y - l_y) / (r_x - l_x)) * (m_x - r_x)) + r_y
- result = m_y
-
- return result
-#
-
-
-####################################################################
-# find_left_right function
-# find the values and positions of the elements at the left and the
-# right of the element in position pos on the anim_array
-# elements will be used in the interpolate() function later
-#
-# anim_array (array of floats) --> anim property frame array its
-# length must the animation length
-# pos (int) --> position of the animation property value to be
-# later interpolated in the anim_array array
-####################################################################
-def find_left_right(anim_array, pos):
-#
- #############################
- # create left/right variables
- l_val = 0
- l_val_pos = 0
- r_val = 0
- r_val_pos = 0
-
- #####################################
- # find near left value (has to exist)
- # read array from right to left
- for i in range(len(anim_array), -1, -1):
- #
- # skip elements at the right of
- # pos in anim_array
- if (i >= pos):
- continue
-
- # left value is found
- if (anim_array[i] != None):
- l_val = anim_array[i]
- l_val_pos = i
- break
- #
-
- ##############
- # special case
- ##############
- # if pos is the last element position on
- # the array r_val and r_val_pos do not exist
- if (pos == (len(anim_array) - 1)):
- return [l_val_pos, l_val, None, None]
-
- #########################################
- # find near right value (might not exist)
- # read array from left to right
- for i in range(len(anim_array)):
- #
- # skip elements at the left of
- # pos in anim_array
- if (i <= pos):
- continue
-
- # right value is found
- if (anim_array[i] != None):
- r_val = anim_array[i]
- r_val_pos = i
- break
-
- # if no value is found at the end of
- # the anim_array r_val and r_val_pos do not exist
- # (value does not change between the left value
- # found and the end of the animation)
- if (i == (len(anim_array) - 1)):
- return [l_val_pos, l_val, None, None]
- #
-
- # if all values are found, return them
- return [l_val_pos, l_val, r_val_pos, r_val]
-#
-
-
-#######################################################
-# convert_angle_to_180 function
-# function used by the convert_anim_rot_to_180 function
-# to convert a single angle in its representation on
-# the -180/+180 degree range (angles passed to the
-# function that are already in this range will be
-# returned without conversion)
-#
-# angle (float) --> angle to convert to the -180/+180
-# degree range (angle is expected to
-# be in degrees)
-#######################################################
-def convert_angle_to_180(angle):
-#
- # check if the angle really needs to be processed
- # i.e. is already inside the -180/+180 degree range
- if (angle >= -180 and angle <= 180):
- return angle
-
- # convert it otherwise
-
- # check if it is positive or negative
- # and set the opposite direction of the angle
- # if the angle is > 0 then its mesurement is clockwise (opposite is counter-clockwise)
- # if the angle is < 0 then its mesurement is counter-clockwise (opposite is clockwise)
- if (angle > 0):
- opposite_spin_dir = -1
- else: # it is negative
- opposite_spin_dir = 1
-
- # decrease the angle by 360 degrees until it
- # is in the -180/+180 degree interval
- while (abs(angle) > 180):
- angle = angle + (opposite_spin_dir * 360)
-
- return angle
-#
-
-
-###############################################################
-# convert_anim_rot_to_180 function
-# used to re-calculate a rotation animation on an axis
-# so that angles used lay in between -180/180 degrees
-# done to avoid rotation animation data loss when extracting
-# said angles from a transformation matrix
-# this function calls the convert_angle_to_180() function
-# at the end of the function csv_keyframe_numbers is updated
-# with the new frames to be injected into the animation
-#
-# example:
-#
-# Original keyframes:
-# Frame 0 Frame 21 (2 keyframes)
-# 0º 360º
-#
-# Processed keyframes:
-# Frame 0 Frame 10 Frame 11 Frame 21 (4 keyframes)
-# 0º 171.4º -171.5º 0º
-#
-# rot_array (array of floats) --> bone rotation animation data
-# for a single axis
-# csv_keyframe_numbers (array of ints) --> original keyframes
-# of the animation
-#
-# Note: function will have problems interpreting keyframes with
-# high rotation diferences if the number of frames in
-# between said keyframes in lower than 2 times the spins
-# done in between those keyframe angles (thinking a fix)
-###############################################################
-def convert_rot_anim_to_180(rot_array, csv_keyframe_numbers):
-#
- # temp rot array to store calculated values and keyframe position
- rot_array_cp = [[], []]
-
- # find the frames in which rot_array has values defined
- rot_array_kf = []
- for i in range(len(rot_array)):
- if (rot_array[i] != None):
- rot_array_kf.append(i)
-
- ###########################################################################
- # loop through each consecutive pair of keyframes of the rot_array_kf array
- for i in range(len(rot_array_kf) - 1):
- #
- # get left/right keyframe values and positions
- l_kf_pos = rot_array_kf[i]
- l_kf_val = rot_array[l_kf_pos]
- r_kf_pos = rot_array_kf[i + 1]
- r_kf_val = rot_array[r_kf_pos]
-
- # append l_kf_val to rot_array_cp (converted)
- rot_array_cp[0].append(l_kf_pos)
- rot_array_cp[1].append(convert_angle_to_180(l_kf_val))
-
- # get the rotation direction
- if (r_kf_val > l_kf_val): # clockwise
- rot_direction = 1
- else: # counter-clockwise
- rot_direction = -1
-
- ##############################################################
- # advance -180/+180 (depending on the rotation direction)
- # and generate the middle keyframe values
- # angle is fixed to the l_kf_val's closest 360 degree multiple
- angle_val = l_kf_val - convert_angle_to_180(l_kf_val)
- while (abs(r_kf_val - angle_val) > 180):
- #
- angle_val = angle_val + (rot_direction * 180)
-
- # find the frame (float) in which this value exists
- angle_pos = interpolate(l_kf_pos, l_kf_val, r_kf_pos, r_kf_val, None, angle_val, "linear")
-
- ############################################
- # find the 2 frames (integer) that are lower
- # and upper limits of this angle_pos
- lower_frame = int(angle_pos)
- upper_frame = int(angle_pos + 1)
-
- ###############################################################
- # interpolate to find the values on lower_frame and upper_frame
- lower_frame_value = convert_angle_to_180(interpolate(l_kf_pos, l_kf_val, r_kf_pos, r_kf_val, lower_frame, None, "linear"))
- upper_frame_value = convert_angle_to_180(interpolate(l_kf_pos, l_kf_val, r_kf_pos, r_kf_val, upper_frame, None, "linear"))
-
- ################################
- # append results to rot_array_cp
-
- # keyframes
- rot_array_cp[0].append(lower_frame)
- rot_array_cp[0].append(upper_frame)
- # values
- rot_array_cp[1].append(lower_frame_value)
- rot_array_cp[1].append(upper_frame_value)
- #
- #
-
- ##########################################
- # add the new keyframe values to rot_array
- # on their respective frame position
- for i in range(len(rot_array_cp[0])):
- rot_array[rot_array_cp[0][i]] = rot_array_cp[1][i]
-
- #######################################################
- # update the keyframes on csv_keyframe_numbers to store
- # the calculated keyframes numbers from rot_array_cp[0]
- # append those at the end of csv_keyframe_numbers
- for i in range(len(rot_array_cp[0])):
- value_found = False
- for j in range(len(csv_keyframe_numbers)):
- if (rot_array_cp[0][i] == csv_keyframe_numbers[j]):
- value_found = True
- break
- if (value_found == False):
- csv_keyframe_numbers.append(rot_array_cp[0][i])
-#